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In this paper, a piezoelectric phononic crystal beam at the nanoscale has been mechanically
modeled by using the surface piezoelectric theory. The band gap has been calculated by the
plane wave expansion method and the band gap structure picture has been analyzed. The
influence of electromechanical coupling effects, surface effects and geometry on the band
gap properties are discussed separately. This study contributes positively to the design and
active control of nanoelectromechanical systems.
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1. Introduction

In 1992, M.M. Sigalas and E.N. Economou first confirmed theoretically that the three-
-dimensional periodic lattice structure formed by filling a certain matrix material in a spher-
ical scatterer has characteristics of an elastic wave/acoustic wave band gap. Compared with
the electromagnetic wave band gap of a photonic crystal, they defined a concept of an elas-
tic wave/acoustic wave band gap phononic crystal (Sigalas and Economou, 1992). Due to its
band gap, defect state and other characteristics, scholars have carried out extensive research on
phononic crystals in the fields of ship and ocean, aerospace engineering and construction (Yin
et al., 2022), such as low-frequency vibration isolation/sound insulation/absorption (Chu et al.,
2023; Zou et al., 2023; Zuo et al., 2022), subwavelength acoustic focusing (Yang et al., 2022;
Yao et al., 2021), acoustic/elastic wave cloak design (Ghoreshi and Bahrami, 2022), ultrahigh
frequency resonators (Yao et al., 2021), wave filters (Lee et al., 2023), etc.

In recent years, scholars have done a lot of research between phononic crystal band gap
regulation and metamaterial design, such as introducing other physical fields (magnetic field,
electric field, temperature, etc.) to regulate the nature of the phononic band gap, which can
realize dynamic control of acoustic waves, such as piezomagnetic phononic crystals, piezoelec-
tric phononic crystals, magneto-electroelastic phononic crystals and so on (Qian et al., 2022).
Among them, piezoelectric materials as functional materials, such as piezoelectric ceramics,
piezoelectric crystals and piezoelectric polymers, have characteristics of a fast response, more
flexible and intelligent, and its principle is mutual conversion between mechanical energy and
electrical energy, which can be used to actively regulate the band gap by an electric field, and
it is widely used in the fabrication of electromechanical transducers and acoustic devices with
acoustic-electric effects. The main types of piezoelectric phononic crystals are single, embed-
ded piezoelectric/elastic composite, and externally attached piezoelectric film/elastic structure
composite type.
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The above phononic crystals are all studied under the macroscopic scale size, with continu-
ous development of nano-preparation technology. The study of the structure of materials with
nanoscale size tends to be popular, and a number of works on the study of the structure of
nano-phononic crystals emerged (Chen et al., 2017; Huang and Yu, 2006; Yan and Jiang, 2011;
Zhen et al., 2012). The band gap of phononic crystals has also been shifted from hertz (Hz),
megahertz (MHz) to gigahertz (GHz), and terahertz (THz).

Nanomaterials exhibit several unique effects due to their small size and specific properties.
These effects include the surface effect, small size effect, quantum size effect, and macro quantum
tunneling effect (Du et al., 2000). The classical continuum theory in the macro scale mechanical
model falls short in accurate describing the behavior of nanomaterials due to size-dependent
effects observed in them.

However, many scholars have modified the classical mechanics theory and proposed higher-
-order theories, such as: micropolar theory (Surana et al., 2017), nonlocal elastic continuum
theory (Eringen and Edelen, 1972), surface elasticity theory (Gurtin et al., 1998), strain gra-
dient theory (Aifantis, 1999), and modified coupled stress theory (Yang et al., 2002). The sur-
face/interface of nanostructured scatterers has different elastic characteristics from the internal
bulk material. Gurtin and Murdoch (1975) established a surface/interface elastic model which
abstracts the surface/interface into a thickness-independent elastic film that is intimately bound
to the internal material and does not slip. The theoretical model can be used to analyze the
surface/interface effect of nanostructured scatterers.

For piezoelectric nanomaterials, the traditional surface elastic model has some limitations.
Piezoelectric nanomaterials exhibit surface piezoelectric and dielectric effects, which are key fac-
tors overlooked by traditional surface elastic models. To address these limitations, Huang and
Yu (2006) proposed a surface piezoelectric model that incorporates the effects of surface piezo-
electricity, elasticity, and dielectricity. Their approach to this model allowed for an examination
of the stress and charge response pertaining to the surface piezoelectric effect in piezoelectric
rings. Notably, the outcomes of their investigation unveiled the substantial influence of surface
piezoelectricity on electromechanical characteristics of piezoelectric nanostructures.

Moreover, vibration and buckling characteristics of piezoelectric nanobeams were explored
by Yan and Jiang (2011), taking into account the influence of surface effects. Their research
underscored the paramount role of surface residual stress and surface piezoelectricity, which
revealed a substantial influence over the resonant frequency and critical buckling potential. In
comparison, the impact of surface elasticity was comparatively less significant. This implies that
the surface piezoelectric effect and surface residual stress should be carefully considered in the
design and analysis of nanoscale piezoelectric structures.

Overall, these studies provide a valuable theoretical support for the application of nanoscale
piezoelectric materials. By considering the surface piezoelectric, surface elastic, and surface
dielectric effects, researchers can gain a more comprehensive understanding of the electrome-
chanical behavior of piezoelectric nanomaterials and optimize their performance in various ap-
plications.

In recent years, researchers have made a significant progress in the development of calculation
methods to analyze the band gap structure of phononic crystals. At present, the commonly used
methods are: plane wave expansion method (PWE) (Zuo et al., 2022), lumped mass method
(Kong et al., 2023), finite difference time domain (FDTD) method (Cao et al., 2004), finite
element method (FEM) (Lu et al., 2022). As a mature method for numerical simulation of
mechanical systems, the finite element method has a worked well with periodic structures and has
also been successfully applied to the calculation of one-, two- and three-dimensional structures.
However, it produces a large number of node degrees of freedom, which increases the computation
amount and requires huge cost. The calculation amount of PWE is much smaller than that of
FEM, and its calculation results have also been verified to be consistent with FEM (Qian and
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Shi, 2017). The PWE method transforms the band structure calculation into the solution of a
generalized eigenvalue problem by expanding the material and displacement field of the periodic
structure into Fourier series and combining the Bloch theorem.
In this paper, a mechanical model of a circular cross-section piezoelectric phononic crystal

nanobeam is proposed by considering the surface effect. Through a combination of PWE, Euler-
Bernoulli beam theory and surface elasticity theory, the control equation for a circular cross
section phononic crystal nanobeam is obtained. It proposes a computational approach to study
the band gap structure, and explores the effects of mechanical-electrical coupling, surface effect,
and geometric size on the first two orders of the band gap in phononic crystals through band
gap calculations and analysis of the band structure diagram.

2. Model and method

Fig. 1. A model of a piezoelectric phononic crystal nanobeam with surface effects

This paper discusses the investigation of a circular piezoelectric nanophononic crystal beam.
The beam structure is composed of alternating cycles of a piezoelectric material, specifically
PZT-5H, and an elastic material known as an epoxy resin. The primary focus of this study is
to analyze the properties and behavior of this unique crystal beam configuration. A Cartesian
coordinate system is shown in Fig. 1. The x-axis represents the axial direction, the y-axis rep-
resents the width direction, and the z-axis represents the height direction. In the crystal beam
structure, an electric field V is applied to the epoxy resin. In addition, an applied axial force P0
is considered. These external inputs introduce mechanical-electrical coupling effects into the
system. The lattice parameter a has the following definition

a = a1 + a2 (2.1)

where a1, a2 are sizes of the piezoelectric material PZT-5H and the elastic material epoxy resin
in a cell.
In the proposed analysis, the circular cross section of the piezoelectric nano-phononic crystal

beam has a diameter of D. In this particular study, material interface effects are neglected,
but the surface effects are still considered and assumed to exist on the surface of the beam.
To reflect these surface effects, the beam structure is divided into a surface layer and a block
layer. However, the thickness of the surface layer is usually ignored, so the beam cross-section
is circular.
From the Euler-Bernoulli beam theory, the axial strain εx and deflection w(x, t) at any point

in the beam are defined as

εx = −z
∂2w(x, t)

∂x2
(2.2)
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The electric field strength Ez in the direction z is represented by the potential Φ as

Ez = −
∂Φ

∂z
(2.3)

The block eigenstructure equation of PZT-5H is expressed as

σx = c11εx − e31Ez Dz = e31εx + κ33Ez (2.4)

where σx denotes the axial stress and Dz denotes the surface potential shift in the z-direction.
c11, e31 and κ33 denote the modulus of elasticity, piezoelectricity constant, and dielectric con-
stant, respectively.
According to the potential shift boundary condition in electromagnetic theory, the normal

potential shifts can be equal. In the Gurtin-Murdoch surface theory model, the surface layer
potential shifts and the interface potential shifts are the same, so the PZT-5H surface layer
constitutive equation can be derived:

σsx = σ
0
x + c

s
11ε
s
x − e

s
31E
s
z Dsz = D

0
z (2.5)

where σsx and σ
0
x denote the axial surface stress and residual surface stress, respectively. D

s
z and

D0z denote the surface potential shift and residual surface potential shift, respectively. E
s
z denotes

the surface electric field strength in the z-direction, so Esz = Ez due to equality of the electric
field strengths of the surface layer and the bulk layer. εsx denotes the surface strain. c

s
11 and e

s
31

denote the surface Young’s elastic modulus and the surface piezoelectric constant.
Disregarding the free charge, it follows from Gauss’ theorem

∂Dz
∂z
= 0 (2.6)

Substituting Eqs. (2.2) and (2.3) into (2.4)2 and (2.6)

Φ = −
1

2
z2
e31
κ33

∂2w(x, t)

∂x2
+ zf1(x, y) + f2(x, y) (2.7)

Considering the electric field boundary conditions Φ(−D/2) = 0 and Φ(D/2) = V , the
electric potential is obtained as

Φ = −
e31
2κ33

∂2w(x, t)

∂x2

(

z2 −
D2

4

)

+
V

D
z +
V

2
(2.8)

Substituting Eq. (2.8) into (2.3), the electric field strength Ez can be expressed as

Ez = z
e31
κ33

∂2w(x, t)

∂x2
−
V

D
(2.9)

Substituting Eqs. (2.8) and (2.9) into (2.4)1 and (2.5)1, the axial stresses in the PZT-5H block
and surface layer can be expressed as

σx = e31
V

D
−
(

c11 +
e231
κ33

)

z
∂2w(x, t)

∂x2

σsx = σ
0
x + e

s
31

V

D
−
(

cs11 +
es31e31
κ33

)

z
∂2w(x, t)

∂x2

(2.10)

For the block part of the epoxy, the eigenstructure equation can be described as

σx = Eεx (2.11)

where E denotes the elastic modulus.
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The epoxy surface layer portion of the epoxy resin, whose intrinsic formula is expressed as

σsx = σ
0
x + E

sεsx (2.12)

where ES denotes the surface elastic modulus.
Substituting Eq. (2.2) into (2.11) and (2.12), the axial stress of the epoxy can be defined by

bending deflection as

σx = −Ez
∂2w(x, t)

∂x2
σsx = σ

0
X − E

sz
∂2w(x, t)

∂x2
(2.13)

All surface layer and block parameters have a certain correspondence

ps ↔ lspb (2.14)

where ps, pb are the respective surface layer and block parameters, and ls are the material
internal parameters.
Derived from the generalized Young-Laplace equation and the corresponding formula (Yan

and Jiang, 2011), the vibration control equation of the nanobeam considering surface effect can
be expressed as

∂2M

∂x2
− P
∂2w(x, t)

∂x2
−
∂

∂x

∫

C

Txz dC −

∫

C

Tz dC = −ρS
∂2w(x, t)

∂t2
(2.15)

The corresponding parameters are shown as follows:

M = −

∫

S

σxz dS P = P0 +

∫

S

σx dS Tx =
∂σsx
∂x

Tz =
σsx
Rc

(2.16)

where M is the bending moment, P is the axial force, Tx and Tz are the traction jumps caused
by surface stress, Tz only acts on the top and bottom of the beam. C and S represent the
circumference and area of the interface, ρ is density of the material, and Rc is curvature.
For the z-direction surface tension Tz of the top and bottom surfaces of the beam, in the

calculation of the circular section (Qian, 2018), it is regarded as a square section with an equal
area. In this paper, it is improved: the z-axis is taken as the central axis, the left and right
sweeps 45◦, and the formed area is regarded as the upper and lower surface (as shown in Fig. 2).
To obtain surface tension in the z-direction, integration along this boundary is performed.

Fig. 2. Surface tension Tz integral region (red)

Substituting the above equations, the vibration control equations for piezoelectric and elastic
nanobeams considering surface effects can therefore be uniformly expressed as

∂2

∂x2

(

m(x)
∂2w(x)

∂x2

)

− n(x)
∂2w(x)

∂x2
= ω2p(x)w(x) (2.17)

where m(x) = (m1(x),m2(x)), n(x) = (n1(x), n1(x)), p(x) = (p1(x), p2(x))

m1(x) =
πD4

64
c+
πD3

8
cs m2(x) =

πD4

64
E +
πD3

8
Es

n1(x) =
πD

4

(

σ0x + e
s
31

V

D
+ 2e31V

)

+ P0 n2(x) =
πD

4
σ0x + P0

p1(x) = ρ1A p2(x) = ρ2A

(2.18)
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where c = c11+e
2
31/κ33, c

s = cs11+e
s
31e31/κ33, ρ1, ρ2 represent density of the PZT-5H and epoxy

resin.
Due to the axial periodicity of the structural material,M(x), N(x) and P (x) are all periodic

functions in the x-direction, and can therefore be expanded into a Fourier series. Here, three
functions can be expressed uniformly by g(x)

g(x) =
∑

G

g(G)eiGx (2.19)

where G is the reciprocal lattice vector and g(G) is the Fourier expansion coefficient which can
be defined as

g(G) =

{

gAf + gB(1− f) fox G = 0

(gA − gB)Υ (G) fox G 6= 0
(2.20)

where gA, gB are the corresponding coefficients of the material, respectively, and f = a2/a
denotes the filling ratio of the epoxy resin to the whole protocell and, in addition, Υ (G) =
f sin(Ga2/2)/(Ga2/2) is a structural function, and is only related to the shape of the scatterer
epoxy resin.
Due to the periodicity of the structure and Bloch’s theorem, the displacement field w(x) can

be decomposed as follows

w(x) = wk(x)e
i(kx−ωt) (2.21)

where k is the Bloch wave vector confined to the first Brillouin zone. The function wk has the
same periodicity as the material parameters and can be expressed as a Fourier series

wk(x) =
∑

G′

eiG
′xwk(G

′) (2.22)

Substituting it into Eq. (2.21), wk can be defined as

w(x) = e−iωt
∑

G′

ei(G
′+k)xwk(G

′) (2.23)

Substituting Eqs. (2.19) and (2.23) into (2.17) and selecting N inverted lattice vectors for cal-
culation, we can obtain the following equation

(MG+NG− ω2PG)×w(G) = 0 (2.24)

where

[MG]ij = (k+Gi)
2m(Gi −Gj)(k+Gj)

2

[NG]ij = n(Gi −Gj)(k+Gj)
2 [PG]ij = p(Gi −Gj)

(2.25)

Equation (2.24) is a linear equation for solving the generalized eigenvalues of ω2. For a given
Bloch wave vector k in the first Brillouin zone, a series of eigenvalues ωkn (n = 1, 2, . . .) can
be obtained. The energy band structure of this piezoelectric nanophononic crystal beam can be
obtained when k varies over [−π/2, π/2].

3. Numerical results and analyses

3.1. Band structures of PC nanobeams with circular cross sections

The band gap structure of piezoelectric nanophononic crystal beams with a circular cross-
-section was determined based on the parameters provided in Table 1. The results of energy
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Table 1. Bulk material parameters of PZT-5H and epoxy (Yan and Jiang, 2011)

Material ρ [kg/m3] E [GPa] c11 [GPa] e31 [C/m2] κ33 [C/(Vm)]

PZT-5H 7500 – 126 −6.5 1.3 · 10−8

Epoxy 1180 76 – – –

Fig. 3. Band structure of piezoelectric nanophononic crystal beams with a circular cross-section
considering surface effects

band structure calculations are illustrated in Fig. 3. The geometric parameters used for the
calculations were: a1 = a2 = 50 nm, and D = 10 nm. The parameters for the surface layer were
as follows: σ0x = 1N/m and ls = 1nm. The applied voltage was V = 0.2V, and the applied axial
force was P0 = 110

−8 N.

As depicted in Fig. 3, there are three fully open band gaps below 30GHz. In this paper,
the characteristics of the first two orders of the band gap are investigated. Specifically, the
first-order band gap ranges from 2.2762Hz to 3.4735 GHz, with a band gap width of 1.913GHz.
The second-order band gap spans from 10.2557 GHz to 13.8244 GHz, with a band gap width of
3.5687 GHz.

3.2. Influence of electromechanical coupling effects on band gap characteristics

As shown in Fig. 4, it illustrates the influence of voltage on the vibration band gap of
piezoelectric nanophononic crystal beams with surface effects. The calculation parameters for
this analysis are provided in Table 1. From the figure, it can be observed that as the voltage
varies from −50V to 20V, the starting frequency of the first-order and the second-order band
gap decreases continuously and tends to 0. This indicates that the band gap shifts towards lower
frequencies as the voltage increases. The width of the first-order and the second-order band
gap exhibits non-monotonic behavior. The former initially decreases, then increases, and finally
decreases again, ultimately approaching 0. The later shows a gradual increase, reaching a peak,
and then decreases until it tends to 0.

As shown in Fig. 5, it illustrates the impact of the applied axial force P0 on the band gap of
piezoelectric nanophononic crystal beams. In Fig. 5, as the axial force varies from −40·10−8 N to
10 · 10−8N, the starting frequency of the first two orders of the band gap increases continuously
from 0. This indicates that the band gap shifts towards higher frequencies as the axial force
increases. Furthermore, the width of the band gap initially increases, then decreases, and finally
increases again.
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Fig. 4. The influence of voltage V on the band gap

Fig. 5. The influence of the applied axial force P0 on the band gap

3.3. Influence of surface effects on band gap characteristics

Figure 6 demonstrates the influence of the material characterization length ls on the band
gap of the system. The range of ls values considered is from 0nm to 1 nm. From the figure,
it is evident that the characterization length ls exhibits an increasing trend on both the onset
frequency and band gap width of the first-order. As the value of ls increases, the onset frequency
of the first-order band gap shifts towards higher frequencies, and the width of the band gap also
increases. Similarly, the onset frequency and band gap width of the second-order also show a
similar increasing trend with the characterization length ls. As the value of ls increases, the
onset frequency of the second-order band gap shifts towards higher frequencies, and the width
of the band gap also increases.

As shown in Fig. 7, it illustrates the impact of surface residual stress σ0x on the band gap of
the system. The range of σ0x values considered is from 0N/m to 1N/m. According to the figure,
it is evident that the surface residual stress σ0x has a weak increasing trend on both the onset
frequency and width of the first-order and the second-order band gap. However, the trend can
be approximated as remaining relatively constant within the range of values considered. This
indicates that as the surface residual stress σ0x increases within the given range, there is a slight
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Fig. 6. The influence of the material characterization length ls on the band gap

Fig. 7. The influence of the surface residual stress σ0
x
on the band gap

overall effect on the band gap characteristics. The onset frequency and width of both the first-
-order and the second-order band gap may experience minimal changes, potentially exhibiting
a gradual increase. However, these changes are generally small compared to the range of values
considered, and the trend can be approximated as remaining constant.

3.4. Influence of geometric parameters on band gap characteristics

As shown in Fig. 8, it demonstrates the impact of the circular cross-section diameter D of a
piezoelectric nanophononic crystal beam on the first-order starting frequency, band gap width,
and the second-order starting frequency, band gap width. In this analysis, the diameter D
is varied from 0nm to 25 nm, while other parameters remain consistent with Table 1. From
the figure, it can be observed that as the diameter D increases, there is a consistent trend in
changes of the first-order and the second-order starting frequencies as well as the band gap
widths. Specifically, the values initially decrease and then increase.

Figure 9 depicts the influence of the length ratio a1/a2 between the PZT-5H and epoxy resin
on the onset frequency and band gap width of the first two orders of the band gap. As the length
ratio a1/a2 increases, the onset frequency of both the first-order and the second-order band gap
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Fig. 8. The influence of the cross-sectional diameter D on the band gap

Fig. 9. The influence of a1/a2 on the band gap

decreases and tends towards 0. This suggests that a higher length ratio corresponds to lower
starting frequencies of the band gaps. Concerning the band gap width, the trend observed for
both the first-order and the second-order band gap can be roughly approximated as initially
increasing up to a peak, and then decreasing towards 0. This implies that there is an optimal
length ratio that maximizes the band gap width for each order of the band gap. It is important
to avoid excessive length ratios if a wide band gap width is desired in engineering applications.
Instead, designing the length ratio near the peak value can help maximize the band gap width.

4. Conclusions

In this paper, the band gap characteristics of piezoelectric nanophononic crystal beams with
circular cross-sections are analyzed and explored in terms of the electromechanical coupling
effect, surface effect, and geometry, respectively, and the following conclusions are drawn:

• With an increase of voltage V , the first two orders of the band gap move towards the lower
frequency. The first order band gap shows a minus increase and tends to 0, the second
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order band gap increases first and then decreases and tends to 0. With an increase of the
applied axial force P0, the first two orders of the band gap move in the lower frequency
direction, and the width of the band gap shows the tendency of an increase and decrease.

• The increase of the material characterization length ls makes the starting frequency of the
band gap move in the high frequency direction, and the bandwidth increases. The increase
in the surface residual stress σ0x has a smaller effect on the band gap characteristics and
can be approximated as remaining relatively stable.

• As the diameter D of the circular cross-section increases, the onset frequency and width
of the band gap of the first two orders both decrease and then increase. The increase of
the length ratio a1/a2 makes the onset frequency of the first two orders of the band gap
decrease and tend to zero, which means that a higher length ratio corresponds to a lower
onset frequency of the band gap, and the width of the first two orders of the band gap
exhibits an increase and then decreases and tends to zero.
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